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SUMMARY This paper describes an attempt to develop a statistical expert system
(FILTEX) as an intelligent aid for time-series filter design. To this end the knowledge of
the filter design strategy is represented in Prolog and coupled with numerical routines of a
general purpose signal processing package. This knowledge-based system is conceived as a
set of independent knowledge sources integrated into a system by a blackboard mechanism
which embodies overall control of the filter design process. Modularity and flexibility of
knowledge representation in such a framework preserve usability of the evolving system
during its development from the original numerical package to an expert system for filter
design. This approach seems to be more flexible than the use of shells and less time
consuming than building from scratch. A novel method for incorporating classical
statistical information into an uncertainty management mechanism is presented.
Experimental results confirm the feasibility of the approach and set directions for further
research.

1 Introduction

Available measurements of a dynamic system generally represent the sum of the
signal and noise. An important task of signal processing is to eliminate as much of the
noise as possible through processing of the measured time series by a filter. The
development of an intelligent aid for time-series filter design can be viewed as a
paradigmatic example of an expert system for a specific statistical domain (Gale,
1986). Optimal design of time-series filters is one of the classical problems of
mathematical statistics and the theory of stochastic processes (Wold, 1938;
Kolmogorov, 1939; Wiener, 1949; Kalman, 1960). However, the attempt to adapt
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this model-based approach to the general problem of signal processing had only
limited success mainly because of the following reasons:

(a) lack of information on validity of assumptions used by the theory;

(b) inability of theoretical criteria (such as minimum variance, maximum
likelihood, etc.) to account for all the requirements posed by practical signal
processing problems (e.g. computational efficiency or level of representation
sought by the application).

Moreover, from the very early stages of implementation of optimal (statistical) filter
design theory (see for example James ez al., 1947; Schmidt, 1966), it was clear that
even in the classical domains of application a knowledgeable engineer is needed to
perform it.

We believe that the use of artificial intelligence techniques to represent the
knowledge of a time series specialist in addition to the existing software for signal
processing makes a sound basis for a useful and practically achievable expert system
for filter design. A knowledge-based approach allows us to model a skilled engineer’s
strategy in combining formal and informal methods for solving signal processing
problems.

Currently, our attention is restricted to time series generated by linear SISO
systems. A feasibility study was performed on an experimental system for
simultaneous parameter and order evaluation of ARMAX models (Krtolica ez al.,
1988). To perform this task, a general-purpose signal processing package SIG™*
(Lager & Azevedo, 1985) was coupled with programs for symbolic processing
written in Prolog. We pursued this approach by incorporating more expert
knowledge into SIG which ultimately lead to a knowledge-based system for time
series analysis and design (Krtolica er al., 1989). At that point a standard Prolog
interpreter without special features was used, which resulted in shallow coupling of
SIG and Prolog where information was exchanged via external files. Shortly
afterwards, we switched to IF/Prolog, a professional compiler/interpreter which
provides a direct interface to numerical routines. This enables deeper coupling of
numerical and symbolic parts of the system such that numerical routines can be
incorporated into IF/Prolog through its interface to Fortran which offers the
possibility of writing numerical, Fortran-based predicates and using them like
standard Prolog predicates. The modular and multilayered Fortran-based organiza-
tion of SIG gave us the opportunity to use its numerical routines which can carry
out the statistical analysis of the time series data and the estimation of model
parameters to fit the data, as the basis for FILTEX numerical predicates. The whole
system is being developed on a VAX/VMS 750/11 installation.

In Section 2 we state the problem of filter design at hand. In Section 3 we describe
the software components on top of which an evolving expert system is built. The
current state of development is described in Section 4, and a possibilistic approach to
the selection of filter structure in Section 5. Finally, Section 6 outlines the
experimental framework and results. An example of an interactive FILTEX session
is given in Appendix A.

2 Statement of the problem

Design and selection of appropriate processing algorithms (filters) for a given time
series (signal) are an important part of the signal processing problem. Solving this

*SIG is a trademark of the Lawrence Livermore National Laboratory.
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task requires some knowledge about the signal source (the dynamic system that
generates signals in the application at hand), and knowledge of the aim and
constraints of a particular implementation of the algorithm. This knowledge is used
to develop a design strategy by which an expert in the field generates and selects the
processing algorithms in accordance with the data available. However, a human
expert in his current practice needs to possess only part of the knowledge
encompassed by the outlined design strategy. The aim of a particular signal
processing application, its constraints, as well as the structure of the model of the
signal source, are all domain specific, while the statistical analysis of time series data
and the estimation of model parameters are domain independent. As general-
purpose signal processing CAD systems represent efficiently the main (procedural)
part of this domain-independent body of knowledge, for an expert designer it is
enough to possess the remaining, non-procedural part of this knowledge and
knowledge of the domain-specific part of the design strategy (e.g. the goals and
constraints of the algorithm implementation, and the structure of the signal sources).

This paper describes an attempt to complete the representation of the filter design
strategy which is only partially automated by general-purpose signal processing
CAD systems. To this end, we must represent the non-procedural part of the
domain-independent knowledge and the domain-specific knowledge (e.g. the
constraints to be met and the goals to be achieved by an implementation of the
selected filter); we must also represent the available knowledge about the class of
allowable signal source models in the domain of interest.

From the classical CAD point of view, the difficulty in representing this kind of
knowledge lies in the fact that it is qualitative and thus cannot be translated into
numerical algorithms easily. Our concept of knowledge-based filter design takes
advantage of the development of symbolic computation in order to overcome this
difficulty.

3 Structure of the FILTEX system

The expert system for design of time-series filters (FILTEX) is conceived as a set of
knowledge-based modules integrated into a system using the blackboard architec-
ture (Nii, 1986; Engelmore & Morgan, 1988). Each module represents an independ-
ent source of knowledge, which incorporates one or more numerical routines and a
knowledge base of its own, and performs a task that contributes to the problem-
solving process, thus realizing part of the overall filter—selection strategy. Individual
tasks generally belong to one of the following groups:

(a) input/output and dialogue handling (performed by the INOUT knowledge
source group);

(b) preprocessing: tests of periodicity (seasonability) and stationarity, normaliz-
ation by non-linear transformations, smoothing, etc. (performed by the
PREPROC group);

(c) correlation and spectral estimation of stationary time series (performed by the
SPECORR group);

(d) selection of shaping filters (low-pass, high-pass, band-pass. . .) for the given
set of signals (performed by the SHAPE group);

(e) model-based approach to signal processing (optimal filtering and prediction of
stationary time series, performed by the MODEL group).

The overall structure of FILTEX is depicted in Fig. 1.
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—

F1G. 1. Overall structure of the FILTEX system.

The blackboard architecture offers a mechanism for achieving opportunistic
reasoning and flexible problem solving. In this approach domain knowledge is
organized into independent knowledge sources which correspond to different areas
of specialization within the problem-solving process and communicate mutually
through a global data base called the blackboard. All input information, partial
solutions and alternatives which lead to the final solution are kept on the domain
blackboard. The current state of the solution is kept on the control blackboard and it
determines which of the knowledge sources can, in the next step of the problem-
solving process, contribute to the final solution. The scheduling mechanism
(scheduler) selects and activates one of these knowledge sources which creates a new
partial solution, or modifies an existing, according to the specialized knowledge
encoded within. This mechanism can be based on different criterion functions (e.g.
priority of knowledge sources, knowledge source confidence level, etc.), which
provides for the realization of flexible problem-solving strategies. In other words,
the strategy can be easily modified by changing either the values of the criterion
function for particular knowledge sources or the criterion function (i.e. scheduling
mechanism) itself.

The knowledge sources and the blackboard can take various representation forms.
It is well known that frames represent a clearly defined concept for knowledge
representation (Winston, 1984). At the same time, this concept, being flexible and
open, can easily accommodate the needs of specific problem-solving. Each frame
contains slots which describe stereotyped properties of a given object, act or event
and its connections to other frames within the hierarchical structure of the frame
system. A particular slot can be filled in three different ways: by giving it a value; by
inheritance from a frame at a higher level of abstraction; by assigning a procedure to
be fired in order to compute the value of the slot when it is required, which provides
for an active nature of the frame system. Since slots can contain both declarative and
procedural information it seemed convenient to use frames for holding knowledge
encoded in knowledge sources, as well as various kinds of information about the
knowledge sources themselves, such as the priority of execution, the circumstances
in which knowledge sources can apply their knowledge, etc. Frames were also used to
represent the control and domain blackboard as well. The values of their slots
represent the relevant control and domain information (partial solutions, alterna-
tives, etc.).
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The choice of Prolog by which to implement the FILTEX frame system was based
on the following reasons:

(a) versus procedural high-level languages (‘non-artificial intelligence’)—ease of
processing and adequate power;

(b) versus LISP—logic oriented, easier inference engine building, due to built-in
resolution and unification;

(c) versus commercially available shells—flexibility of specific expert system
design (see for example Merritt, 1989).

4 Current state of development

FILTEX is an evolving expert system whose modular structure allows for an
incremental implementation. Presently, it encompasses the core of the blackboard
control mechanism (Hayes-Roth, 1985) and the knowledge sources related to the
selection of shaping filters and to the model-based approach. What follows is a brief
description of the salient features of the part implemented so far.

The filter design process starts with a dialogue, led by an appropriate knowledge
source, in which the user specifies the problem at hand, i.e. the (output) time series
that requires filtering, the appropriate excitation time series (optionally), and other
relevant information available (e.g. information concerning the signal source). The
results of this dialogue are registered on the blackboard. If these results indicate that
direct noise elimination can be achieved, i.e. that the frequency spectra (range) of the
signal and noise can be separated by means of a shaping filter, then the selection of
such a filter can represent a satisfactory solution. If this is not the case, then only a
filter based on linear prediction might solve the problem. Since the numerical part of
FILTEX offers algorithms for both classes of filters, the main strategic goal can be
decomposed into two disjoint subgoals: selection of an appropriate shaping filter or
the selection of a filter based on linear prediction.

The selection of a shaping filter generally represents a simpler task since it is based
on heuristic rules established by traditional engineering practice. The corresponding
strategy represents a less interesting part of FILTEX, based on a simple and
practical characterization of a limited number of filter types, which leads to a more
or less ‘classical’ rule-based system for the selection of the appropriate filtering
algorithm.

The filters based on linear prediction (predictive filters) require a model of the
filtered signal (see for example Candy, 1986). For practical purposes, we restricted
the allowable models to the class of linear, finite-dimensional, parametric SISO
models. Even so, the number of possible solutions is extremely large, and the effects
of particular models on the quality of filtering have not yet been totally clarified. The
selection of a predictive filter, being such a complex problem, allows for multiple
problem-solving strategies. Consequently, the representation of relevant knowledge
(both theoretical and empirical) in the expert system leads to interesting knowledge-
based design problems. We shall therefore focus our discussion on the current
implementation of strategy related to predictive filters.

The adopted strategic paradigm for predictive filter design was the search for a
least complex acceptable solution (the principle of parsimony). Engineering
experience points out that this approach represents a general characteristic of
predictive filter design (as well as the design of technical solutions in general). A
linear predictive model can either belong to one of the elementary classes (the
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autoregressive (AR), the moving average (MA) or the input-only (X) model), or it
can be represented as a combination of elementary models and thus belong to one of
the complex classes (ARMA, ARX, MAX or ARMAX). The design strategy relies
on subsequent creation of models from different classes, according to the strategic
paradigm, followed by numerical realization (simulation) of appropriate residual
sequences (parameter identification and prediction error simulation).

Following the principle of parsimony, the first strategic goal is an elementary
model which satisfies the assumed constraints such as allowable model complexity or
acceptable final prediction error. In an attempt to satisfy this goal, a model from each
of the elementary classes (AR, MA, X) is proposed by corresponding knowledge
sources, following their local optimization rules. A set of such rules relates to the
knowledge used by an expert performing visual analysis of the shape of the following
four functions (Box & Jenkins, 1976; Hippel ez al., 1977):

— autocorrelation function (ACF);

— partial autocorrelation function (PACF);

— inverse autocorrelation function (IACF);

— inverse partial autocorrelation function (IPACF).

A sample rule from this set is given (handcompiled into an informal syntax) in Fig. 2.
Another set encompasses the rules based on such criteria as structure complexity and
statistical parameters of the residual sequence (mean, variance, etc.). All elementary
models that satisfy the constraints are model candidates and represent possible
solutions. However, if no elementary model candidates were found then the search
for a model candidate is continued in complex classes by combining the two (three)
elementary models. Knowledge sources which propose models from complex classes
are invoked and a model from each class is created. The obtained complex models
that satisfy the constraints now represent the set of model candidates. However, if
again no model candidates were found, an extensive search is performed in the limits
of the allowable model complexity, i.e. all models within these limits are created and
checked. If even this time-consuming application of ‘brute force’ fails, i.e. no model
candidates emerge, then the user must be informed that under present constraints an
appropriate solution cannot be found.

If atany point in the aforementioned strategy at least one model candidate appears,
the set of acceptable models becomes non-empty. Following again the strategic
paradigm, an attempt is made to widen this set by looking for possible less complex
model candidates. The least complex candidate in the initial set is identified and
models obtained by lowering the complexity of this model candidate are examined. If
model candidates are found among them they are included in the set of acceptable
solutions. Finally, a choice of model candidates from this set is offered to the user
according to a set of rules for final selection. The aim of these rules is primarily to
choose an appropriate selection criterion for pruning the set of model candidates.
Currently the criteria include Pareto optima (on mean, variance and possibly model
complexity), clustering/partitioning of variances, specialised criteria (e.g. Akaike’s),

(R1) g is the order of the MA part of the model with probability p(e)
IF the absolute value of ACF of the given output signal is less than ¢,
when the argument t is greater than or equal to g+1,
AND the input signal does not exist.

F1G. 2. A rule for the analysis of the autocorrelation function (ACF).
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(R2) Apply clustering of variances
IF  the signal/noise ratio is greater than a,
AND complex poles are present in the model.

(R3) Complex poles are present in the model
IF  fast Fourier transformation of the input signal reveals identifiable
poles.

F1G. 3. Sample rules from the second group.

and a (novel) possibilistic approach which, being also of theoretical interest, is
described in some detail in Section 5. A sample of these rules is given in Fig. 3. As a
result of this final selection of model candidates, based on numerical processing and
rule-based reasoning, a most appropriate model (or set of models) is presented to the
user. He then has the opportunity to either confirm the system’s choice and, in the
case of a set of models, pick one of them as the most suitable or overrule this proposal
by choosing a model he considers to be the most appropriate. Upon this final choice a
predictor model (filtering algorithm) is automatically generated. Simulation facil-
ities can be used to test the selected algorithm on various time sequences.

The outlined strategy obviously represents only one possible path to the solution.
The available pieces of knowledge can be combined in other ways to achieve the same
strategic goal: the selection of an appropriate filter for the elimination of noise from a
measured signal. Different strategies with the blackboard architecture can be
realized by rescheduling the knowledge source activation, i.e. by changing the
scheduling mechanism. Obviously, the rescheduling cannot be totally arbitrary since
the current state of the solution on the blackboard determines which of the
knowledge sources can be activated at that very moment. In order to formalize all
interdependences between the knowledge sources and the blackboard, and to
identify different possibilities of both control and data flow, a specialized inference
network was developed (Obradovic et al., 1990).

5 An approach to the selection of filter structure based on possibility
theory

One element of the knowledge base within the knowledge source for final selection
deserves particular attention and relates to a specific (and more theoretically
justified) decision mechanism for selecting (one or more) model candidates. This
approach is based on a generalization of appropriate ¢ and F tests for residual error
sequences of various model candidates and the use of possibility theory to interpret
and combine them. Namely, classical interpretation of the statistical tests is given as
binary decision making, based on arbitrary confidence levels. Also, such an approach
does not allow for a meaningful combination of independent statistics test results. In
contrast, here we generate a possibility distribution over the candidate structures
where the degree of possibility for various structures is based upon the value of their
F and ¢ statistics (more precisely, on a generalization of what is labeled in the classical
test setting as the confidence level or risk of rejecting the true hypothesis). In what
follows, we describe the key ideas, assuming some acquaintance with both possibility
and statistical testing theories.
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s(x)

N v N x

F16. 4. Analyzing the distribution hypothesis, based on a realization of the random variable (¢ or F). The
arrows indicate possible locations of x; that determine the zone R and integral r;; the limits of the zone S are
chosen so that equal areas appear on both sides of x, and the total area is 1—2¢~ 1.

Let us observe a finite set of n candidates, K. The proposed method includes
generating a possibility distribution over all candidates k;e K (=1, %) based on the
following steps:

(1) Apply a ‘modified test’, i.e. compute, for each value of ¢

r= f s(x)dx ¢))
R

where s(x) represents the density function for the appropriate statistics (random
variable, e.g. ¢ or F). The integration domain R depends on the realization of the
statistics x; for a given candidate k;: when x; is greater than the mean x', R = {x|x > x},
otherwise R = {x|x<x;} (Fig. 4).
(2) Compute
ik )=leryuaGt vice vt
J=er; @

=1 it ¢ =
where ¢>2 is a given constant.

(3) In the case where n(k;)>1 for all i=1,#7, introduce another event, ‘other
candidates’ (k,), with possibility n(k,)=1 (in order to normalize the possibility
distribution). :

(4) Repeat steps (1)—(3) for different test statistics and combine the obtained
distributions using the possibilistic combination rule (Prade, 1985). For two
distributions 7,(—) and 7,(—) defined over some set P, a new possibility
distribution 75(—) can be defined as follows:

VpeP, ny(p)=min {n,(p), n,(p)}/d
where
d=supmin {r,(p), 7,(p)}
peP
is a (re)normalizing coefficient.
We now give a justification of this procedure.

(1) The apparata of possibility measures and distributions address basically the
same phenomena as probability theory, which is at the core of mathematical
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statistics. Since there is insufficient information for the use of probabilities, we use
the less strict possibilistic setting.

(2) The distribution defined through steps (1)—(3) satisfies the conditions for a
possibility distribution. It is easy to see that it satisfies the definition

o<nk)<1; Ikek,nk)=1

Moreover, it can be considered as generated from 7 separate possibility distributions
7 (—) such that

Vi, Vi, mik;) =1 if i ]
o<m(k)<l  ifi=j

which are uniquely combined via the possibilistic rule of combination, since it is both
commutative and associative. Thus, we have

Ve, n(k)=min {m(k), 1} =m,(k)

and the normalization coefficient d is equal to 1.

(3) Each of the n distributions is an intuitively satisfactory interpretation of the
associated modified tests, since the information it carries is possibilistic in nature. As
with classical testing, no quantification of the null hypothesis H, can be made, as
opposed to the alternative hypothesis H;. The integral (1) directly generalizes the
notion of risk (confidence level) in statistical tests having in mind that in this case, for
preset values of risk, we determine the probability (relative frequency) of falling in or
out of the critical region. With the modified test, for a given value x, of the statistics
(the realized value of the test), we seek the significance of its distance from the
expected value x’ as a measure of hypothesis validity. Simply, the ‘closeness’ of the
realized value x, and the expected value x’ is only a necessary condition for testing
H,, therefore large values of |x’' — x,| render evidence in favor of H, (in a measurable
fashion), whereas small values provide no specific evidence whatsoever.

Further details about the choice of ¢, practical results and other aspects of this
approach are given by BozZinovi¢ et al. (1988) and Obradovic ez al. (1989).

The following can be said of the presented possibilistic approach to filter selection:

(a) it conforms with the intuitive meaning of statistical tests;

(b) it preserves all the information present in the test statistics which is lost in
classical testing;

(c) itgivesa clearer picture about hypothesis quality, through the necessity/possi-
bility pair of values;

(d) it allows for a meaningful and tractable combination of independent statistics
test results via the possibilistic combination rule.

Preliminary experimentation has proved the viability of this concept.

6 Experimental issues

A number of experiments have been performed with the implemented part of the
system, mainly to test the model-based case, using the simulation facilities to control
fully the experimental framework. In other words, the output signals were generated
using an algorithm for linear system simulation, by specifying the following:

— the input signal
— the noise signal
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— the model of the system itself (delay function polynomials of the ARMAX
model)

The nature and values of all three parameters have been varied over a broad range.
Some of the types of input signals used were as follows:

— a delayed step function

— a ramp function

— a piece-wise periodical function
' Gaussian noise as the input

The noise signals were all white Gaussian signal, with zero mean and a variance
changing from 103 to 102. The case without noise was also examined.

As to the models of the system, various delay function polynomials have been
hand-picked in order to account for, among other cases

— different orders of the model (polynomials)

— polynomials with real and complex zeros

— models with and without zero-pole cancellation
— stable and unstable models

In particular, for each model defined we varied the input and noise signals to produce
a set of 10-20 output signals, given a total of approximately 100 test cases. Each of the
output signals generated, together with the corresponding input signal, was then
subjected to filter design via the FILTEX system. Since all these signal sources were
‘identified’ as linear, time-invariant SISO models, the design procedure ended with
a model (or set of models) chosen by the system as most appropriate, or a report of
failure to accomplish the task. In the case of a successful ending, the chosen model(s)
could then be compared with the one which originally generated the output signal.

This experimental framework was primarily intended to serve as a means for
testing system performance, but it also turned out to be a valuable source of new
knowledge, which could then be incrementally built in the system. Thus FILTEX
evolved not only by incorporating established (‘external’) signal processing heur-
istics, but also the ‘internal’ ones which appeared in the experimentation phase. We
now briefly state a few of the major conclusions offered by the experimentation
material.

(a) Identification ended successfully only for stable models, since in the case of
instability, almost always numerical overflow was encountered.

(b) Mildly non-stationary input signals do not result in higher identification
failure rate.

(c) For a successful identification, excitation persistance is complementary with
noise magnitude.

(d) Partitioning the set of model candidates into two classes (of ‘possible’ and
‘inferior’ models) by clustering the residual error sequence variances was
possible in most cases: the variances in the ‘possible’ set were of the same order
of magnitude, and considerably higher in the ‘inferior’ set. The first set always
included the true model.

(e) Within the ‘possible’ set, the true model was often indistinguishable from the
rest; in this sense the set seemed to form an equivalence class of models.

(f) A larger signal-to-noise ratio results in better discrimination within the set of
model candidates.
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(g) The presence of complex poles in the model allowed for a good discrimination
even for lower signal-to-noise ratios.

(h) The variances of residual sequences in the ‘possible’ set of models were of the
same order of magnitude as the variance of the input noise.

(i) When the assumed degree of the input signal polynomial was inferior to the
true degree the appropriate model usually belonged to the set of ‘inferior’
models, whereas no systematic pattern of overfitting has been observed.

(j) Within the possibilistic approach certain values of the constant ¢ yielded good

! discrimination.

Currently, when the system has to perform an extensive search for model
candidates the response time tends to be large (several minutes).

7 Conclusions

An attempt to represent the knowledge of the filter design strategy by upgrading a
general-purpose signal processing package is proposed. Incorporating this expert
knowledge in such a numerical package is a practical alternative to the classical
dilemma between use of shells (often too restrictive) and building from scratch (often
time consuming). This results in a coupled system that integrates the existing
numerical routines with symbolic computation in a blackboard architecture realized
through a system of frames written in Prolog. Such an approach offers the possibility
to preserve usability during the evolution from the original numerical package to the
expert system for filter design. Two main features of such an evolving system are
system modularity and flexibility of its knowledge representation framework. This
framework allows incremental building of the knowledge acquired during the
experimental work with the system. We also proposed a novel method to incorporate
classical statistical information into an uncertainty management mechanism. Initial
experimental results confirm the feasibility of the overall approach.
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Appendix A: Example of an interactive FILTEX session
WELCOME TO FILTEX
The EXpert system for FILTer design

Please enter the data store number of the output signal.
-> 30

Does the input (excitation) signal exist?

—) yes

Please enter the data store number of the input signal
-> 31

Is the signal/noise ratio favorable?

—> explain

A favorable signal to noise ratio is a ratio over 100: 1.
Is the signal/noise ratio favorable?

—> dont know

Then I have to assume an unfavorable signal/noise ratio and look for a solution in the
class of filters based on linear prediction.
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Do you want to set a limit to model complexity?

—) yes

In that case, please enter the allowable model complexity.

%7

Can you give any information about the variance of the white noise?

—>» no

Can you set a limit to the final prediction error?

—).yes

Please enter the acceptable final prediction error.

- 2.0

The default strategic paradigm is the search for a least complex acceptable solution.
Do you accept this strategy?

—> explain

An attempt is made to find a model from an elementary class (AR, MA, X).

If that fails, a model is searched for in complex classes (ARMA, ARX, MAX,
ARMAX). If that also fails, an extensive search is performed.

(The alternative strategy is an immediate extensive search within the limits of
allowable complexity).

Do you accept this strategy?

—) yes

According to the selected strategy, I shall try to identify an elementary model which
satisfies the assumed constraints. The identification is based on a set of rules for local
optimization.

The Levinson algorithm identifies the following model:

Model class: AR

Final prediction error: 2.28847 - Complexity: 2 Variance: 2.23545
A-order: 2 Parameters: [1.0,—1.75355,0.789704]

B-order: 0 Parameters: [0.0]

C-order: 0 Parameters: [1.0]

The harmonic lattice algorithm identifies the following model:

Model class: AR -

Final prediction error: 2.28916 Complexity: 2 Variance: 2.23612
A-order: 2 Parameters: [1.0,—1.74064,0.77758]

B-order: 0 Parameters: [0.0]

C-order: 0 Parameters: [1.0]

The geometric lattice algorithm identifies the following model:

Model class: AR

Final prediction error: 2.29233 Complexity: 2 Variance: 2.23923
A-order: 2 Parameters: [1.0,—1.77248,0.806374]

B-order: 0 Parameters: [0.0]

C-order: 0 Parameters: [1.0]

The minimum lattice algorithm identifies the following model:

Model class: AR

Final prediction error: 2.31017 Complexity: 2 Variance: 2.25666
A-order: 2 Parameters: [1.0,—1.80504,0.835763]

B-order: 0 Parameters: [0.0]

C-order: 0 Parameters: [1.0]
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Each of the applied algorithms proposed the same structure: [2,0,0]. This structure
will be used for the ABC-algorithm (recursive least square algorithm).

The ABC-algorithm identifies the following model:

Model class: AR

Final prediction error: 2.28934 Complexity: 2 Variance: 2.2363
A-order: 2 Parameters: [1.0,—1.7412,0.777598]

B-order: 0 Parameters: [0.0]

C-order: 0 Parameters: [1.0]

Be aware of the fact that this identification ignores the input signal!
I shall now propose a moving average (MA) model:
The ABC-algorithm identifies the following model:

Model class: MA

Final prediction error: 12.2187 Complexity: 4 Variance: 11.7506
A-order: 0 Parameters: [1.0]

B-order: 0 Parameters: [0.0]

C-order: 4 Parameters: [1.0,0.807131,0.735356,0.702332,0.723644]

Be aware of the fact that this identification ignores the input signal!
Since excitation input exists I shall now propose an input-only (X) model.

The ABC-algorithm identifies the following model:

Model class: X

Final prediction error: 135.016 Complexity: 3 Variance: 130.862
A-order: 0 Parameters: [1.0]

B-order: 3 Parameters: [192.605,—41.2294,6.78511,99.2071]
C-order: 0 Parameters: [1.0]

The following set of elementary models is obtained:

AR [2,0,0] Final prediction error: 2.28934 Complexity: 2
MA [0,0,4] Final prediction error: 12.2187 Complexity:
X [0,3,0] Final prediction error: 135.016 Complexity:

(SN R

Models with allowable complexity are listed below:

AR [2,0,0] Final prediction error: 2.28934 Complexity: 2
MA [0,0,4] Final prediction error: 12.2187 Complexity: 4
X [0,3,0] Final prediction error: 135.016 Complexity: 3

There are not models with acceptable final prediction error!

None of the proposed elementary models satisfies both constrains: allowable model
complexity and acceptable final prediction error. The search for amodel is continued
in complex classes that combine the two (three) elementary models.

Combining the two elementary models AR and MA results in the ARMA-model
[2,0,4].

The ABC-algorithm identifies the following model:

Model class: ARMA
Final prediction error: 12.6558 Complexity: 6 Variance: 11.9821
A-order: 2 Parameters: [1.0,— 1.75826,0.800797]
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B-order: 0 Parameters: [0.0]
C-order: 4 Parameters: [1.0,—0.324869,—0.333956,—0.177451,—0.108827]

Be aware of the fact that this identification ignores the input signal!
Identification of the ARX-model is based on the following heuristic: B-order is taken
from the identified X-model, A-order is increased until a local optimum is reached.

The ABC-algorithm identifies the following model:

Model class: ARX

Final prediction error: 1.71155 Complexity: 7 Variance: 1.60782
A-order: 4 Parameters: [1.0,—2.31059,2.05395,—0.980142,0.256049]
B-order: 3 Parameters: [—125.191,156.177,—76.4071,13.2458]
C-order: 0 Parameters: [1.0]

Identification of the MAX-model is based on the following heuristic: B-order is
taken from the identified X-model, C-order is increased until a local optimum is
reached.

The ABC-algorithm identifies the following model:

Model class: MAX

Final prediction error: 24.1885 Complexity: 10 Variance: 22.1954

A-order: 0 Parameters: [1.0]

B-order: 3 Parameters: [111.848,91.3862, — 14.9579,343,849]

C-order: 7 Parameters: [1.0,0.742962,0.580706,0.694335.0.49722,
0.516644,0.357807,0.198458]

Identification of the ARMAX-model is based on the following heuristic: B-order is
taken from the identified X-model, A-order and C-order are taken from the ARX
and MAX models and decreased until a local optimum is reached.

The ABC-algorithm identifies the following model:

Model class: ARMAX

Final prediction error: 1.68277 Complexity: 6 Variance: 1.59319
A-order: 2 Parameters: [1.0,—1.79429,0.81718]

B-order: 3 Parameters: [ —141.24,109.43, —3.08864, — 15.2422]
C-order: 1 Parameters: [1.0,0.724317]

The following set of complex model is obtained:

ARMA [2,0,4] Final prediction error: 12.6558 Complexity: 6
ARX [4,3,0] Final prediction error: 1.71155 Complexity: 7
MAX [0,3,7] Final prediction error: 24.1885 Complexity: 10
ARMAX [2,3,1] Final prediction error: 1.68277 Complexity:

=)

Models with allowable complexity are listed below:

AR [2,0,0] Final prediction error: 2.28934 Complexity: 2
MA [0,0,4] Final prediction error: 12.2187 Complexity: 4
X [0,3,0] Final prediction error: 135.016 Complexity: 3
ARMA [2,0,4] Final prediction error: 12.6558 Complexity: 6
ARX [4,3,0] Final prediction error: 1.71155 Complexity: 7
ARMAX [2,3,1] Final prediction error: 1.68277 Complexity: 6
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Models with acceptable final prediction error are listed below:

ARX [4,3,0] Final prediction error: 1.71155 Complexity: 7
ARMAX [2,3,1] Final prediction error: 1.68277 Complexity: 6

The set of the models which satisfy both constrains (allowable model complexity and
acceptable final prediction error) is no more empty. An attempt is made to widen this
set with additional, less complex models.

I shall start with the least complex model: ARMAX [2,3,1].

By decreasing it’s complexity successively the following models can be obtained.

The ABC-algorithm identifies the following model:

Model class: ARMAX

Final prediction error: 1.68372 Complexity: 5 Variance: 1.6066
A-order: 2 Parameters: [1.0,—1.78967,0.812438]

B-order: 2 Parameters: [ —138.546,110.364,—15.5921]
C-order: 1 Parameters: [1.0,0.685271]

The ABC-algorithm identifies the following model:

Model class: ARMAX

Final prediction error: 1.68456 Complexity: 4 Variance: 1.62002
A-order: 2 Parameters: [1.0,—1.84254,0.868383]

B-order: 1 Parameters: [—125.67,97.6667]

C-order: 1 Parameters: [1.0,0.537024]

The ABC-algorithm identifies the following model:

Model class: ARX

Final prediction error: 1.91759 Complexity: 3 Variance: 1.85859
A-order: 2 Parameters: [1.0,—1.85316,0.881658]

B-order: 1. Parameters: [—78.1468,51.2152]

C-order: 0 Parameters: [1.0]

Since the final set of model-candidates includes only 5 models, no further pruning
will be done. Please select one of the following criteria for ranking the set of model-
candidates:

A. Final prediction error

B. Model complexity

C. Residual sequence variance
D. Akaike’s information criterion

Which criterion do you want to select?
N &

The order of the proposed model-candidates is:

Model class: ARMAX

Final prediction error: 1.68277 Complexity: 6 Variance: 1.59319
A-order: 2 Parameters: [1.0,—1.79429,0.81718]

B-order: 3 Parameters: [ —141.24,109.43,—3.08864, — 15.2422]
C-order: 1 Parameters: [1.0,0.724317]
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Model class: ARMAX

Final prediction error: 1.68372 Complexity: 5 Variance: 1.6066
A-order: 2 Parameters: [1.0,—1.78967,0.812438]

B-order: 2 Parameters: [—138.546,110.364,—15.5921]
C-order: 1 Parameters: [1.0,0.685271]

Model class: ARMAX

Final prediction error: 1.68456 Complexity: 4 Variance: 1.62002
A-order: 2 Parameters: [1.0,— 1.84254,0.868383]

B-order: 1 Parameters: [—125.67,97.6667]

C-order: 1 Parameters: [1.0,0.537024]

Model class: ARX

Final prediction error: 1.71155 Complexity: 7 Variance: 1.60782
A-order: 4 Parameters: [1.0,—2.31059,2.05395,—0.980142,0.256049]
B-order: 3 Parameters: [—125.191,156.177,—76.4071,13.2458]
C-order: 0 Parameters: [1.0]

Model class: ARX

Final prediction error: 1.91759 Complexity: 3 Variance: 1.85859
A-order: 2 Parameters: [1.0,—1.85316,0.881658]

B-order: 1 Parameters: [ —78.1468,51.2152]

C-order: 0 Parameters: [1.0]

Do you want ARMAX [2,3,1] to be the chosen candidate?

—> no

Please enter the structure of the candidate you want to choose.

_> [23131]

I shall now prepare a file containing the predictor coefficients for this model.
The predictor coefficients are in the file “pred.dat”, and the error predictor
coefficients in the file“‘epred.dat”; both can be transferred to SIG data stores via the
RCREAD command.

GOOD BYE FROM FILTEX!
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